The large-scale quantification of impervious surfaces provides valuable information for urban planning and socioeconomic development. Remote sensing and GIS techniques provide spatial and temporal information of land surfaces and are widely used for modeling impervious surfaces. Traditionally, these surfaces are predicted by computing statistical indices derived from different bands available in remotely sensed data, such … CONTINUE READING
Category: Machine Learning

With the recent release of TensorFlow 2.0, showcased at GEO for Good 2019, there is increased interest in employing an array of neural net approaches to solve various Remote Sensing research questions. A dedicated group from NASA SERVIR has spent the last 5 days exploring the Google Earth Engine, Google Colaboratory, and Google … CONTINUE READING