Tutorials/Post - Remote Sensing, GIS, Earth System, Geo-AI/ML

Category: Paper Page 1 of 3

Mapping sugarcane in Thailand using transfer learning, a lightweight convolutional neural network, NICFI high resolution satellite imagery and Google Earth Engine

Air pollution from burning sugarcane is an important environmental issue in Thailand. Knowing the location and extent of sugarcane plantations would help in formulating effective strategies to reduce burning. High-resolution satellite imagery combined with deep-learning technologies can be effective to map sugarcane with high precision. However, land cover mapping using high-resolution data and computationally intensive … CONTINUE READING

Automatic Detection of Impervious Surfaces from Remotely Sensed Data Using Deep Learning

The large-scale quantification of impervious surfaces provides valuable information for urban planning and socioeconomic development. Remote sensing and GIS techniques provide spatial and temporal information of land surfaces and are widely used for modeling impervious surfaces. Traditionally, these surfaces are predicted by computing statistical indices derived from different bands available in remotely sensed data, such … CONTINUE READING

Comparing Sentinel-1 Surface Water Mapping Algorithms and Radiometric Terrain Correction Processing in Southeast Asia Utilizing Google Earth Engine

Satellite remote sensing plays an important role in the monitoring of surface water for historical analysis and near-real-time applications. Due to its cloud penetrating capability, many studies have focused on providing efficient and high-quality methods for surface water mapping using Synthetic Aperture Radar (SAR). However, few studies have explored the effects of SAR pre-processing steps … CONTINUE READING

Predictive Analytics for Identifying Land Cover Change Hotspots in the Mekong Region

Understanding land cover change dynamics and potential pathways of change is of critical importance for sustainable resource management, to promote food security and resilience on a range of spatial scales. Data scarcity is a key concern, however, with the availability of free Earth Observation (EO) data, such challenges can be suitably addressed. In this research, … CONTINUE READING

Operational Flood Risk Index Mapping for Disaster Risk Reduction using Earth Observations and Cloud Computing Technologies: a Case Study on Myanmar

People, livelihoods, and infrastructure in Myanmar suffer from devastating monsoonal flooding on a frequent basis. Quick and effective management of flood risk relies on planning and preparedness to ensure the availability of supplies, shelters and emergency response personnel. The mandated government agency Department of Disaster Management (DDM) as well as local and international organizations play … CONTINUE READING

Page 1 of 3

Powered by WordPress & Theme by Anders Norén